着素数存在许多著名的问题,孪生素数,也称“双生素数”或“双胞胎素数”,就是其中的一个。孪生素数是指一对素数,它们之间相差2,如(3,5)、(5,7)、(11,13)、(17,19)等等。是否存在无穷多对孪生素数?这是迄今尚未解决的著名数学难题。
A、困扰数学家的谜题
欧几里得是最早注意到孪生素数这种有趣现象的人,他曾大胆猜想:存在无穷多对孪生素数。这一猜想被称为“孪生素数猜想”。法国数学家阿尔方·波利尼亚克在1849年提出了更一般的猜想(即“波利尼亚克猜想”):对所有正整数k,存在无穷多个素数对(p,p+2k)。k等于1时就是孪生素数猜想,而k等于其他正整数时就称为弱孪生素数猜想(即孪生素数猜想的弱化版)。因此,也有数学家把波利尼亚克作为孪生素数猜想的提出者。
一直以来,许多数学家和业余数学爱好者一直力图破解孪生素数这个表述极为简洁但又极难证明的猜想。
1900年,德国数学家大卫·希尔伯特在巴黎举行的第2届国际数学家大会上发表了题为《数学问题》的著名讲演。他根据过去特别是19世纪数学的研究成果和发展趋势,提出了23个最重要的数学问题(通称“希尔伯特问题”);孪生素数猜想是希尔伯特问题的第8个的一部分。由于孪生素数猜想与哥德巴赫猜想属于“姐妹”问题,一些数学家希望通过解决前者,进而攻克后者。
挪威数学家维果·布朗在1915年通过使用著名的筛法(sieve method)证明了2能表示成两个最多有9个素数因子的数的差。这个结论已经有些近似于孪生素数猜想了。可以看到,只要将这个证明中的“最多有9个素数因子的数”改进到“最多有1个素数因子的数”,就可以证明孪生素数猜想了。